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A system of equations is derived for the three-dimensional boundary layer in a 
partly ionized multicomponent gas with frozen reactions under conditions of 

quasi-inertness and absence of external electromagnetic fields and of energy 
transfer by radiation. An analytical computation method based on the use of 

successive approximations is investigated. Variation of transfer coefficients 
across the boundary layer is taken into account by approximating the values of 

these at the external boundary and at the surface of the body. First approxima- 

tion values of surface friction and heat exchange coefficients are obtained for 

the locally self-similar cases. An example of computation of the flow of frozen 

air past a cone with spherically blunted nose at an angle of attack is presented. 

1. Let us consider the three-dimensional motion of a partly ionized multicomponent 
gas. If external electromagnetic fields are absent and the thermal diffusion effect is 

disregarded, the system of equations for a three-dimensional frozen boundary layer can 

be written as follows: 

v $ + A# + A2we + Asuw =I 
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T 

hi = s cpi dT + hi’, H = i ckhk -t q 

0 k-1 

where the first equation is that of continuity, the second is the equation of diffusion, the 

third, fourth and fifth are equations of motion of the mixture, and the sixth is the equa- 

tion of energy. System (1.1) is closed by the Stefan-Maxwell relationships and the equa- 

tion of state of the gas mixture 

(1.3) 

where E, q, 5 are coordinates of an orthogonal system, with the 5 -axis normal to the 

body surface so that the surface 5 --_ 0 coincides with the surface of the body, and the 

t- and rt-axes directed along the body surface ; gll and gas are component of the 
metric tensor g == glrgsz; ,9’ is the number of components in the mixture ; u, u and 

w are components of the mean mass flow rate V along the E -, q - and g-axes, respec- 
tively ; p, p and T are, respectively, the pressure, density and absolute temperature 

of the mixture ; m is the molecular weight of the mixture ; ci, Xi, mi and ei are the 
mass and molecular concentration, the molecular weight and the electrical charge ofthe 
i -th component ; Ii is the projection of the mass diffusion stream of the i -th componr 

ent on the 5 -axis ; p and (T are the viscosity coefficient and the Prandtl number, respec- 

tively ; Dij are the binary diffusion coefficients ; hi is the enthalpy of the i -th com- 

ponent ; Cpi is the specific heat at constant pressure of the i-th component; hi” is 

the specific heat of formation of the i-th component, and N is the over-all enthalpy 

of the mixture. 

Coefficients A i and Bi (i -z 1, . . . , 4) are determined by the body geometry and 

the external flow [I]. 
The system of Eqs. (1,. 1) - (1.3) must be supplemented by the identities 

N N N 

(1.4) 

The system of Eqs. (1.1) - (1.3) with (1.4) is a closed system of 2iV -+- 6 indepen- 
dent equations with pJ p, u, w, 21, H, cl . . ., cN and Jr, . . ., IN as the un- 

knowns. 
Boundary conditions at the external boundary of the boundary layer and at the wallare 

ZJ - =e @A q), UJ - u?, (L q), T -+ T, (E, q) (1‘ 5) 

ci (E, q) -+ tie = eonst for P - 00 
u Z w =-_ 0, T : T, (& q) (at the wall) 
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If the wall is impermeable, then for the diffusion streams of mixture elements 

rj* --f 0 for 5 - 0 (1.6) 

We assume that the gas at the wall is in a state of chemical equilibrium. 
In this case the system of equations that determine the equilibrium composition, the 

Stefan-Maxwell formulas, and the conditions (1.6) of wall impermeability provide suf- 
ficient conditions for determining the mixture chemical composition Ciw and of the 

diffusion streams of components. 

The Stefan-Maxwell formulas (1.2) take into account the electric fields induced by 
charge separation. Its intensity is determined by the condition of quasi-neutrality of the 

gas. 
Having solved the problem it becomes possible to determine the viscous frfctionstress 

d~s~ibnt~on at the surface of the body and the total convection heat flux to the wall 

(1.8) 

2. We substitute the self-similar coordinate h for 5 , and pass to dimensionlessfunc- 

tions _- 

i=l/&\& (2.1) 

24 = u,(%, Irl) E (i, St* V? W = p (Et rl) u, (%9 rt) (G -t- WI 

pr)= \/~Ez!$+-~E~-*(~W~~] 

H =H,f(H,-HH,)% cP=$ 
e 

ck = ckw -+ (eke - cI;uI) zk, 

where a = a (%, y) and B = B (%, rl) are, so far, arbitrary functions, After substi- 

tution and related transformations system (1.1) - (1.3) assumes the form 

3K m -=- -- 

ah 
P1”E - P2*G - N4 ac 

N at-2 
I5 arl 
--tpN,E 

a (1%) = K$+N1*(Ea-+-) + 
Bh 

Nz*G2 + N3*EG f N,E $ + Ns (G 4 rpE) g 

a 1% -Kg 
ah ( 1 

~M~~~~-~)~ 

M,*G= + M3”EG + NJ? $ + Nti (G + cpE) g 

(2.21 
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Qzi"G (1 - xi) -t N,E $+:v,(G+'pE)+ i :7 f 
,. . . . N 

The coefficients Nlk, N2*,N3*, LV,, Ng, Ml*, M2*, MS*, PI* and P,* are 

of the same form as in the case of compressible boundary layer in a one-component gas 
[ 11. They depend only on parameters of the external flow and the geometry of the body. 

The boundary conditions in dimensionless variables are 

~~~~h’~%:=:~i~~ for h = 0 (2.3) 

E-t17 G-tO, %+l, Zi+1 for he DJ (2.4) 

8, We integrate the equations of motion, energy and diffusion of system (2.2) with 
respect to the &-coordinate from some of its value to infinity, taking into account boun- 
dary conditions (2.4). The system of equations now becomes 

(3.1) 

- Zg :-= - KG -+ M,*(Oll -+ 0, -i_ 0,) + (I-‘,” + Mz”)t)22 -+- (3.2) 
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1 a3 --- 
6 ah == - K(0 - 1) + (PI* --fir*)& +(P,* -Rs”)8,, + (3.3) 

N ,++N,Fi-‘pN,$$- 

,i ; : ;,,) + $ lE2 + 13” (G + wQ21 - 

xi = - K (Zi - 1) + (3.4) 

(PI* - Qli*) sli + (p2* - Q2i")Szi + N4 3 + 

~,*;?--ato++g!__, 
1 -to aE, 

R2* = A_.&?_ 
1 -to aq 

Sli = i (Zi - 1) E dhy 
A 

S2~=f(zi_l)Gdh, ep=[(l-!$)dh 
A ?. 

Integrals 8,, 8,, err, Ora, e2r, 022, Cl,, and Cl,, are of the same form as for a com- 
pressible homogeneous gas [2]. We eliminate streams Xi from the equations by substi- 
tuting expressions for dimensionless streams (3.4) into the energy equation (3.3) and into 
the Stefan-Maxwell formulas (2.2). We integrate the obtained system of equations with, 

respect to h from zero to some value of A taking into account (2.3), and obtain a sys- 

tem of integro-differential equations whose solution with boundary conditions (2.4) is 

equivalent to the solution of system (2.2) with conditions (2.3) and (2.4). From the 
continuity equation we obtain the expression for K which we substitute into the remain- 
ing equations and, thus, eliminate it from the system. We solve the derived system of 

equations by the method of successive approximations as was done in [2] for a compres- 

sible homogeneous fluid, 

Let us assume that the n -th approximation is known. Substituting it into the equations 
of the system and carrying out the appropriate integration, we obtain the (n + I)-st. 

approximation. To have the boundary conditions satisfied by the obtained (n + 1)- st 
approximation we introduce controlling functions a@) (E, q), b(n) (i, v), d(n) (E, II) 

and yi(*) (E, r~) We have 

5 = J. 1 J’-% E = E (E, rl, 0, G = bG (E, q, 5) (3.5) 

f!J - E = d [e (E, 7, 5) -E (E, rl, 01 

zi - E = yi [zj (E, q, t;) - E (E, q, c)l, i = 1. . ..q N 

Here and below the superscript (n) is omitted for brevity. The system of equations for 
the determination of the (n + I)-st approximation is of the form 

- ,!Z@+r) = 6 [Al + bB1 + b2CJ + a11 $$ + a12 + + (3.6) 
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a14 g + I/6-Ao1, - Cc”+” == S [A, + bB, + b?C,] -f- 

&I $- + a22 z + u23 $ + a24 g + b fF A02 

N N 

‘in+‘) = 6 [A,+i + bB,+i + 2 yjCs+i, j ‘+ b 2 YjDs+i, j] + 
,= 1 i=i 

N 
as 

Gti, 1 ‘5 +a3+i,2++a3+i,4$+ za3+i,5.j$$+ 
j-s1 

i i = 1, . . . . N 
j=l 

a3+i, 6, j 2 + ~FAo, 3tiy 

e(n+r) == 6 [A, + bR, + dC3 + bdD, + i E,iYi + b i G:,iYi] 3- 
i=l i=l 

‘A’ 

2 F3iY i + T3 + a31 $ + a32 -$- + a34 f$- t- u36 $ + 
i&l 

ad 
a36q i- 

i a3,, i 2 + g a38, i 2 + I/S A03 
i-l i_=l 

where the coefficients A,, B,, . . . are double integrals. 

From equations of system (3.6) with allowance for (2.4) we obtain for 5 --+ M a sys- 
tem of equations in partial derivatives with respect to d, b, d and yi. The first appro- 

ximation coefficients Aloo, Blm, . . derived from coefficients A,, B,, . . . at 5 --+ 

co, are defined below for the locally self-similar case. The substitution of the calcul- 

ated values of controlling functions into Eqs.(3.6) shows that the (n + I)-st approxi- 
mation satisfies boundary conditions (2.4). This process is repeated until the specified 

convergence of the approximation sequence is reached. 

4, Let us consider the locally self-similar case [2, 31. For this we introduce effec- 
tive ambipolar diffusion coefficients [4] and represent the Stefan-Maxwell formulas 

(1.2) in the form 
II, = - @I,* 2 (4.1) 

The use of formulas (4.1) instead of (1.2) simplifies the equations of diffusion and 

energy. 
In the considered case the system of equations in the locally self-similar approxima- 

tion in the absence of blowing-in is of the form 

-E (ri+l) = 6 [A, + bB, + b*C,l (4.2) 

- G(n*l) = 6 [A, -1~. bB, _1- b2C,! 

&wtl) ;_ 6 [A,+i $- b B,+i + YiC,+i + bYiDs+il 
N 

e(*+l) = 6 [AZ + bB, + dC, + bdD3] + 2 p,iYi + T:J 
i-_l 
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For the determination of the controlling functions we obtain a system of algebraic 
equations. The computation of coefficients of these equations requires the knowledge 
of the character of variation of parameters Di* across the layer. 

We approximate the variation of expressions Shi / I, where Shi are the effective 
ambipolar Schmidt numbers, by using their values at the external boundary of the boun- 
dary layer and at the wall 

Shi/ 1 = Sht +(Shiw/t,-Sh,")Z> (4.3) 

The method of calculating the effective ambipolar diffusion coefficients at the boun- 
daries by using the coefficients of binary diffusion is given in [4]. 

Here and in what follows we use unction 2 m (6) of the form 

2-i (5) = e-c*, 2, (5) = 3 \ (5 - t)” e-t* dt, M-o, 1, . . . 

where A, is determined by the condition Z:(O) = 1) . 
Inspection of the solution in the stagnation point neighborhood at various values of 

exponent a, and its comparison with available numerical computation data at the stag- 
nation point [S - ‘71 show that it is possible to select such a, at which the two results are 
in agreement. The best agreement is obtained with cz, = 1 .l _ 

Variation of coefficients 1 I I, pe i p and o / 1 are defined as in (4.3). Values of 
transfer coefficients at the boundaries were computed in the first approximation by the 
Hirschfelder formulas. The required values of collision integrals for electrically neutral 
pairs were taken from the experimental data in [8], for charged particles from [9], and 
for the ion-atom pairs from [7]. 

The dimensionless heat flux to the wall and the coefficients of friction at the wall 
were determined by specifying the zero approximation as follows: 

Ho) = I- 2, (Q, G(O) = b(O) (E, q)[Z, (5) - 2-1 (c)l 

fj(S = I- 20 (5) + d(O) E,(5) - z-1 (01 

z&O) = 1- Z,(5) + #i(O) w, (5) - z-1 (c)l 

Coefficients of the system for determining the controlling functions in zero approxi- 
mation are 

A(O) = -0.25 PI* + O.O453N~* + 
'70.455 + 0.357 A,) N1*p, f pw 

A,(O.O31 Nr* - 0.161 PI*)- 

l3g = 0 104 Ps* 
C'O' ' 

-0.194 Na* + A, (0.0721 Pz* -0.134 Nz*) 

= Na* (0.048 + 0. 0382 AI) 
/Iii = MI*[0.0454 + 0.0311 A, -(0.455 + 0.357 A,) pe i pm1 

Bg = -0.311 PI” -0.194 MS* - A,(O.169 PI* + 0.134 MS*) 

C$% = 0.1 Pa* + 0.048 Mz* + AI (0.05791 Pz* + 0.0382 MO*) 

Ag = P,* (0.0891 o,+ O.l61A,), B$% = Pp* (-0.0315 CT,-- 
0.0721 A3 

($0) se = Pa* (0.141~~~ + 0.169 AZ), DC = Ps* (-0.0419 <3# - 

0.0579 Ah,) 
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tion gradients 

6, Let us consider the flow of air with frozen chemical reactions past a blunted 
cone with a spherical nose at an angle of attack, 

As the model of air we take a four-component ga$ consisting of mobcules, ions, atoms 
and electrons which we denote by M, I, A and E, respectively, Two balanced chemi- 
cal reactions M ;2 2A and I =A - E take place at the wall. Such model makes it possible 

to investigate the flow of air past a body at tem~ratures up to 15 OOO”- 16 000°K down- 
stream of the shock wave. 

Com~tatio~ were based on data on pressure and velocity d~~trib~tio~ in a perfect gas 
on the cone surface [30). 
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Equations (1.1) imply that 

H, = H, = cons& cle = const, i= 1, . . . . N 

The concentrations of components of the gas are determined by conditions at the stag- 
nation point on the assumption that the gas there is in chemical equilibrium. Thenwith 

known H,, U, and Cie , it is possible to determine the temper&me at the outer boundary 
from the equation 

i c;hi (T) = H, - y 

ill 

We introduce the longitudinal and transverse dimensionless components of the local 
friction coefficient, and the Nusselt and Reynolds numbers 

au alu 
c,, = I”, ag w p,‘u,-“7 I 

cj2 = pLw ag w P,-‘u”,2 I 

Taking into account the smallness of secondary flow and neglecting for a cold wall 

terms of order pe I p,“, we obtain for high flight speeds (M, >, 20) the approximde 
formulas 

Cfl v/Re = ffi(O.234 PI* - 0.047 Nr*) 

CjzJ%-=Cjl1/Retg~ = $ Cjl JOG 

e 

I Nu -- 
ae J&r= PI* v/s(o) (0.234 + 0.299 d(O)) 

% 1 u) 

I ShiW ah w 
= PI* v/8(0) (0.234 + 0.209 IJ$O)) 

where y is the angle between streamlines of the external flow and the coordinate line 
7) = const. 

The total convection flux to the wall (1.8) is 

where 
8(O) = [0.(‘89Pr* - O.O/43Nl” + (O.l61Pr* - 0.031Nr~F) / 1,]-’ (5.2) 

y.(o) -= 
1 - I$~)PI* (0.089 Shie + 0.161 Shiw / ‘J 

L1 8’.“)P,* (0.142 Sh; + 0.169 ShiW / ZJ 

a(O) = 
1 - (1 - a,,) (1 + b2~2) i [k (1 - to)] - L3 - h*&b") (O.O89ia, + O.l61a, / lw) 

Pr*o(O) (0.14ia, + 0.269a, / I,& 

N rie - ci l” 1/z-i 

L3 = ix lie - Ii, 
i=l [ 

2 hie I- & (v-T+ YJ f 
( ) z 

hiW (1-s) (+,) fq-l)] 
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If the coordinate system is such that the E-coordinate is directed along a generatrix 
of the cone and is measured from the leading point, and the 11 -coordinate, which is the 

angle between the meridian plane passing through the given point and the windward 

spreading line, the coefficients N1* and PI* are of the form 

(5.3) 

The curves of Nl* and PI* are shown in Fig. 1. The numerals 1, 2 and 3 denote in 

all figures the results obtained along the cone generatrices corresponding to r) = n i 20, 

9=~/;1mdq=n. 

Formula (5.1) and the second formula of (5.2) show that the heat flux is determined 

by coefficient PI*. The second term in (5.4) depends on the geometry of the body, the 

expression in parentheses depends on parameters of the external flow past the body, and 
the coefficient P, takes into account the variation of P&Q. With increasing distance 

Fig. 1 Fig. 3 
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from the stagnation point Ps begins to determine PI* (Fig. l), which means that the 
dimensionless coefficient of friction and the heat flux are then strongly affected byvari- 

ation of gas properties. 

n;, It should be noted that although formula (5. l), 
which determines the heat flux to the wall, does 

0.6 
not implicitly contain diffusion streams, the dif- 

fusion energy transfer in the frozen layer is taken 

into account in the determination of (2(O). The 

0.4 heat transfer to the wall for the frozen air flow 

0.6 0.8 lt: past the body is determined by the total enthalpy 

drop, the variation of parameter PePe, variation 
Fig. 1 of the velocity of external flow along the surface 

of the body, and by the geometry of the latter. 

The variation of parameters k, = Cf, v& and k, = (1 / a,) Nu / Jfi6i along the 
cone generatrices is shown in Figs. 2 and 3, while the gradients of dimensionless concen- 

trations kt .= (1, / Sl~‘~)(at, / ah),,: of molecules and ions (dash lines) appear in Fig. 4. 
The effect of the considered model is apparent on the magnitude of numerical coef- 

ficients in (5.1) - (5.3) and on values of controlling coefficients 8(“!, d(O) and yi”). 
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